Large Hadron Collider: Damaged by a Time-Traveling Bird?

Sometime on Nov. 3, the supercooled magnets in sector 81 of the Large Hadron Collider LHC, outside Geneva, began to dangerously overheat. Scientists rushed to diagnose the problem, since the particle accelerator has to maintain a temperature colder than deep space in order to work. The culprit? "A bit of baguette," says Mike Lamont of the control center of CERN, the European Organization for Nuclear Research, which built and maintains the LHC. Apparently, a passing bird may have dropped the chunk of bread on an electrical substation above the accelerator, causing a power cut. The baguette was removed, power to the cryogenic system was restored and within a few days the magnets returned to their supercool temperatures.

While most scientists would write off the event as a freak accident, two esteemed physicists have formulated a theory that suggests an alternative explanation: perhaps a time-traveling bird was sent from the future to sabotage the experiment. Bech Nielsen of the Niels Bohr Institute in Copenhagen and Masao Ninomiya of the Yukawa Institute for Theoretical Physics in Kyoto, Japan, have published several papers over the past year arguing that the CERN experiment may be the latest in a series of physics research projects whose purposes are so unacceptable to the universe that they are doomed to fail, subverted by the future.

The LHC, a 17-mile underground ring designed to smash atoms together at high energies, was created in part to find proof of a hypothetical subatomic particle called the Higgs boson. According to current theory, the Higgs is responsible for imparting mass to all things in the universe. But ever since the British physicistfirst postulated the existence of the particle in 1964, attempts to capture the particle have failed, and often for unexpected, seemingly inexplicable reasons.

In 1993, the multibillion-dollar United States Superconducting Supercollider, which was designed to search for the Higgs, was abruptly canceled by Congress. In 2000, scientists at a previous CERN accelerator, LEP, said they were on the verge of discovering the particle when, again, funding dried up. And now there's the LHC. Originally scheduled to start operating in 2006, it has been hit with a series of delays and setbacks, including anine days after the accelerator was first turned on, the arrest of one of its contributing physicists onand, most recently, the aerial bread bombardment from a bird. A CERN spokesman said power cuts such as the one caused by the errant baguette are common for a device that requires as much electricity as the nearby city of Geneva, and that physicists are confident they will begin circulating atoms by the end of the year.

In a series of audacious papers, Nielsen and Ninomiya have suggested that setbacks to the LHC occur because of "reverse chronological causation," which is to say, sabotage from the future. The papers suggest that the Higgs boson may be "abhorrent to nature" and the LHC's creation of the Higgs sometime in the future sends ripples backward through time to scupper its own creation. Each time scientists are on the verge of capturing the Higgs, the theory holds, the future intercedes. The theory as to why the universe rejects the creation of Higgs bosons is based on complex mathematics, but, Nielsen tells TIME, "you could explain it [simply] by saying that God, in inverted commas, or nature, hates the Higgs and tries to avoid them."

Many physicists say that Nielsen and Ninomiya's theory, while intellectually interesting, cannot be accurate because the event that the LHC is trying to recreate already happens in nature. Particle collisions of an energy equivalent to those planned in the LHC occur when high-energy cosmic rays collide with the earth's atmosphere. What's more, some scientists believe that the Tevatron accelerator at Fermi National Accelerator Laboratory or Fermilab near Chicago has already created Higgs bosons without incident; the Fermilab scientists are now refining data from their collisions to prove the Higgs' existence.

Nielsen counters that nature might allow a small number of Higgs to be produced by the Tevatron, but would prevent the production of the large number of particles the LHC is anticipated to produce. He also acknowledges that Higgs particles are probably produced in cosmic collisions, but says it's impossible to know whether nature has stopped a great deal of these collisions from happening. "It's possible that God avoids Higgs [particles] only when there are very many of them, but if there are a few, maybe He let's them go," he says.